Color

Maneesh Agrawala

CS 448B: Visualization
Winter 2020

1

Color

3

Color in Visualization

Identify, Group, Layer, Highlight

Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

5

Topics

Color Perception
Color Naming
Using Color in Visualization

Color Perception
 Physical World, Visual System, Mental Models

Physical World

Light is radiation in range of wavelengths

Light of single wavelength is monochromatic

Most Colors not Monochromatic

12

Retina

Simple Anatomy of the Retina, Helga Kolb

As light enters our retinc...

LMS (Long, Middle, Short) Cones Sensitive to different wavelength

18

Cone Response

Integrate cone response with input

Computing Cone Response

Integrate cone response with inpuł

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response
"Standard observer" response curves

Opponent processing

LMS are linearly combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Fairchild

24

Opponent processing

LMS are combined to create: Lightness
Red-green contrast
Yellow-blue contrast

Experiments:
No reddish green, no bluish yellow Color after images

28

CIE LUV and LAB color spaces

Standardized in 1976 to mathematically represent opponent processing theory

33

Axes of CIE LAB

Correspond to opponent signals
L* = Luminance
$\mathbf{a}^{*}=$ Red-green contrast
b* = Yellow-blue contrast
Scaling of axes to represent "color distance" JND = Just noticeable difference (2.3 units)

Munsell Ałlas

Developed the first perceptual color system based on his experience as an artist (1905)

35

Hue, Value, Chroma

37

Hue, Value, Chroma

Hue, Value, Chroma

Psuedo-Perceptual Models

HLS, HSV, HSB

NOT perceptual models Simple re-notation of RGB

- View along gray axis
- See a hue hexagon

$\square \mathbf{L}$ or \mathbf{V} is grayscale pixel value
Cannot predict perceived lightness

Perceptual brightness

HSL Lightness
(Phołoshop)

Perceptual brightness

Percepłual brightness

44
"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

Simultaneous Contrast

The inner and outer thin rings are the physical purple

Simultaneous Contrasł

Josef Albers

54

Bezold Effect

Crispening

Perceived difference depends on background

From Fairchild, Color Appearance Models

63

Spreading

Adjacent colors blend

Spatial frequency

- The paint chip problem
- Small text, lines, glyphs
- Image colors

Redrawn from Foundations of Vision © Brian Wandell, Stanford University

Announcements

Final project

New visualization research or data analysis project

- Research: Pose problem, Implement creative solution
- Data anclysis: Analyze dataset in depth \& make a visual explainer

Deliverables

- Research: Implementation of solution
- Data analysis/explainer: Article with multiple interactive visualizations
- 6-8 page paper

Schedule

- Project proposal: Wed 2/19
- Design review and feedback: $3 / 9$ and $3 / 11$
- Final presentation: 3/16 (7-9pm) Location: TBD
- Final code and writeup: 3/18 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

What color is this?

74

What color is this?

"Yellow"

76

What color is this?

"Blue"

78

What color is this?

Colors according to XKCD...

Color names if you're a girl... Maraschino Cayenne Maroon Plum Eggplant Grape Orchid Lavender Carnation Strawberry Bubblegum Magenta Salmon Tangerine Cantaloupe Banana Lemon Honeydew Lime Spring Clover Fern moss Flora Sea Foam Spindrift Teal Sky Turquoise	Color names if you're a guy... Red Purple Pink Orange Yellow Green Blue

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

82

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay Initial study in 1969
Surveyed speakers from 20 languages Literafure from 69 languages

84

World color survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

86

Results from WCS (South Pacific)

Language *19 (Camsa)
Mutual info $=0.939 /$ Contribution $=0.487$

Language \#24 (Chavacano)
Mutual info $=0.939 /$ Contribution $=0.513$

Results from WCS (Mexico)

Language \#98 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Universal ((\%) Basic Color Terms

Basic color terms recur across languages

White \square RedPinkGrey \square Yellow \square BrownBlack \square Green

OrangeBlue
Purple

Evolution of Basic Color Terms

Proposed universal evolution across
languages

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors
$400 \mathrm{~nm} \quad 500 \mathrm{~nm} \quad$ 600nm 700nm

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

92

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Naming affects color perception

Color name boundaries

> Green Blue

Color naming models

[Heer \& Stone]
Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?
Modeled by entropy of p(name | color)

Palette Design + Color Names

Minimize overlap and ambiguity of color names

Color Name Distance										Salience	Name
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	. 47	blue 62.9\%
1.00	0.00	1.00	0.97	1.00	1.10	1.00	1.00	0.96	1.00	. 90	orange 93.9\%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	. 67	green 79.8\%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	. 66	red 80.4\%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	. 47	purple 51.4\%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	. 37	brown 54.0\%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	. 58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	. 67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	. 18	yellow 31.2\%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	. 25	blue 25.4%
Table	-10							verage	0.97	. 52	

http://vis.stanford.edu/color-names

96

Palette Design + Color Names

Minimize overlap and ambiguity of color names

Color Name Distance										Salience	Name
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	. 30	blue 50.5\%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	. 21	red 27.8\%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	. 34	green 36.8%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	. 55	purple 67.3\%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	. 20	blue 36.6\%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	. 39	orange 51.9\%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	. 13	blue 15.7\%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	. 16	pink 29.4\%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	. 12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	. 30	purple 23.9\%
Excel								verage	0.87	. 27	
						http	/v	stan	ord	edu/c	lor-names

Using Color in Visualization

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries http://www.bartleby.com/107/illus520.html

Molecular Models

Organic Chemistry Molecular Model Set https//www.indigo.com/models/gphmodel/62003.html

Product Categories

Created by Tableau - Visual Analysis for Databases ${ }^{\text {TM }}$

Grouping, Highlighting

	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71

104

Mapping Data to Color (Rainbows)

Avoid rainbow color maps!

. Hues are not naturally ordered
2. People segment colors into classes, perceptual banding
3. Naïve rainbows unfriendly to color blind viewers
4. Low luminance colors (blue) hide high frequencies

Color Brewer

Classing quantitative data

Age-adjusted mortality rates for the United States
Common option: break into 5 or 7 quantiles

Classing Quantitative Data

Equal interval (arithmetic progression)
Quantiles (recommended)
Standard deviations
Clustering (Jenks' natural breaks / 1D K-Means)
Minimize within group variance
Maximize between group variance

Quantitative color encoding

Sequenticl color scale
Ramp in luminance, possibly also hue
Typically higher values map to darker colors

Diverging color scale
Useful when data has a meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Sequential Scale Single Hue

Ramp primarily in luminance, subtle hue difference

Sequential Scale Multi Hue

Ramp luminance \& hue in perceptual color space Avoid contrasts subject to color blindness!

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes

Sequential Scale Multi Hue

Viridis, https://bids.github.io/colormap/

Diverging color scheme

http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html

Diverging color scheme

Diverging color scheme

Hue Transition

Carefully handle midpoint

- Critical class
- Low, Average, High
'Average' should be gray
- Critical breakpoint
- Defining value e.g. 0
- Positive \& negative should use different hues

Extremes sałurated, middle desaturated

Summary: Color Design Principles

Control value (darkness/lightness)
\square Ensure legibility
\square Avoid unwanted emphasis
Use a limited hue palette (${ }^{\sim} 6$ colors)

- Control color "pop out"
- Be aware of perceptual color grouping
- Avoid clutter from too many competing colors

Use neutral backgrounds

- Control impact of color
\square Minimize simultaneous contrast

