

Purpose of Color

To label

To measure

To represent and imitate

To enliven and decorate

"Above all, do no harm."

- Edward Tufte

5

Topics

Color Perception

Color Naming

Using Color in Visualization

Color Perception

Physical World, Visual System, Mental Models

7

Light is radiation in range of wavelengths

Light of single wavelength is monochromatic

CIE LUV and LAB color spaces

Standardized in 1976 to mathematically represent opponent processing theory

33

Axes of CIE LAB

Correspond to opponent signals

L* = Luminance

a* = Red-green contrast

b* = Yellow-blue contrast

Scaling of axes to represent "color distance"

JND = Just noticeable difference (~2.3 units)

Psuedo-Perceptual Models

HLS, HSV, HSB
NOT perceptual models
Simple re-notation of RGB

- View along gray axis
- See a hue hexagon
- L or V is grayscale pixel value

Cannot predict perceived lightness

"In order to use color effectively it is necessary to recognize that it deceives continually."

- Josef Albers, Interaction of Color

Announcements

70

Final project

New visualization research or data analysis project

- **Research**: Pose problem, Implement creative solution
- Data analysis: Analyze dataset in depth & make a visual explainer

Deliverables

- **Research**: Implementation of solution
- Data analysis/explainer: Article with multiple interactive visualizations
- 6-8 page paper

Schedule

- Project proposal: Wed 2/19
- Design review and feedback: 3/9 and 3/11
- Final presentation: 3/16 (7-9pm) Location: TBD
- Final code and writeup: 3/18 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay

Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

Palette Design + Color Names Minimize overlap and ambiguity of color names Color Name Distance Salience Name

55.51	100	Distanc								Salience	Name
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	.37	brown 54.0%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	.58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	.67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	.18	yellow 31.2%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	.25	blue 25.4%
Tableau-10					Α	verage	0.97	.52			

http://vis.stanford.edu/color-names

Palette Design + Color Names

Minimize overlap and ambiguity of color names

http://vis.stanford.edu/color-names

Using Color in Visualization

99

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries http://www.bartleby.com/107/illus520.html

Classing Quantitative Data

Equal interval (arithmetic progression)

Quantiles (recommended)

Standard deviations

Clustering (Jenks' natural breaks / 1D K-Means)

Minimize within group variance

Maximize between group variance

133

Quantitative color encoding

Sequential color scale

Ramp in luminance, possibly also hue
Typically higher values map to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Diverging color scheme

Hue Transition

Carefully handle midpoint

- Critical class
 - Low, Average, High
 - 'Average' should be gray
- Critical breakpoint
 - Defining value e.g. 0
 - Positive & negative should use different hues

Extremes saturated, middle desaturated

Summary: Color Design Principles

Control value (darkness/lightness)

- Ensure legibility
- Avoid unwanted emphasis

Use a limited hue palette (~6 colors)

- Control color "pop out"
- Be aware of perceptual color grouping
- Avoid clutter from too many competing colors

Use neutral backgrounds

- Control impact of color
- Minimize simultaneous contrast